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Shear-induced quench of long-range correlations in a liquid mixture
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A static correlation function of concentration fluctuations if#ute) binary liquid mixture subjected to both
a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrody-
namics. It is shown that a well-knowi c|?/k* long-range correlation at large wave numbesosses over to
a weaker divergent one at wave numbers satisfiing y/D)Y2, while an asymptotic shear-controlled power-
law dependence is found at much smaller wave numbers givéa<ty/ v) "2 wherec, y, D, and v are the
mass concentration, the rate of the shear, the mass diffusivity, and the kinematic viscosity of the mixture,
respectively. The result will provide the possibility to observe the shear-induced suppression of a long-range
correlation experimentally by using, for example, a low-angle light scattering technique.
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[. INTRODUCTION where effects of the shear advection can be treated in an
analytic way[22—24]. It has been predicted theoretically that
Long-range correlations in a fluid far from equilibrium is the density autocorrelation function and the density-
one of the most salient features of nonequilibrium fluctua-momentum correlation function in a sheared compressible
tions[1—6]. Since the seminal discovery of tke* enhance-  fluid exhibit much weaker divergent behavior in small wave

ment of the Rayleigh component of the structure factor in iumber limits than thé* divergence found in large wave
fluid with a uniform temperature gradient by Kirkpatrick, numberg25]. A similar result has also been predicted for an

Cohen, and Dorfmafi7], wherek is the wave number, alge- incompressible fluid26]. Nevertheless, it might be difficult

braic decays of correlation functions have been found theol© Verify these predictions directly by using available experi-

retically in a wide class of nonequilibrium systeri&-14] mental techniques, because the crossover length scales of
The existence of such generic long-range correlations alsg]e_?ﬁesyitren;:eag? fh?smicrgrs?grt)f'em hasize effects of the
have been confirmed in a series of the detailed light scatter- purp pap . P
ing experiments in pure liquidkl5,16 and in binary mix- shear upon long-range correlations which can allow an ex-

' ._perimental confirmation. To this end, we consider a particu-
tures[17]. Although the agreement between the theoretica

X . . o . ““larly simple system, ddilute) low-molecular-weight binary
studies and the experimental ones is sufficiently quantitative, i + ,re with imposed concentration and uniform shear gra-

it has been limited to relatively high wave number_ regions. gients [27]. On the basis of fluctuating hydrodynamics ap-
On the other hand, large-scale, long-time behavior of suChoach[28], we calculate a static concentration autocorrela-
nonequilibrium fluctuations is attracting much more attentionjon function which contributes to the total intensity of the
in recent year$18]. Ultra-low-angle light scattering experi- Rayleigh peak in a light scattering experiment. In Sec. I,
ments performed by Vailati and Gigl{d9] have revealed an  hydrodynamic equations for the concentration and the veloc-
impressive gravity-induced quench of tke* divergence of ity field are introduced with suitable random forces. We ob-
the Rayleigh line intensity at very smadlrange[20] in a  tain general forms of space-time correlation functions of the
binary mixture subjected to a uniform concentration gradienhydrodynamic variables by solving the linearized equations
driven by the large Soret effect. So far as we know, this is thearound the steady state under imposed boundary conditions.
first experimental demonstration that true asymptotic behavin Sec. I, the static correlation function of concentration
ior of a long-range correlation at large distances is qualitafluctuations is expressed in terms of a universal function
tively different from that predicted by the linear responsewhich describes a shear-induced frustration of the long-range
theory at short distances. correlation. This function is numerically evaluated and is
However, from the theoretical point of view, the gravity- compared with asymptotic functions that are analytically de-
induced effect seems to be somewhat exceptional becauserived. In Sec. IV, we provide a simple physical interpretation
can be understood within the simple linear response theorpf our results. We also present rough estimations of the
Generally speaking, a full nonlinear analysis of hydrody-crossover length scales for a realistic fluid to suggest pos-
namic equations is required for studying large-scale transposible experimental verifications. Our conclusion is given in
and fluctuation properties of a flui@1]. Therefore, mainly the last section.
because of its technical difficulty, studies beyond linear re-
sponses are rare in systems far from equilibrium so far. The Il. MODEL AND ANALYSIS
only exception is a system undergoing uniform shear flow ) ) L
A. Basic equations and approximations
The mass diffusion flux generally depends not only on
*Electronic address: wada@daisy.phys.s.u-tokyo.ac.jp the concentration gradier®c but also on the temperature
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gradientVT and on the pressure gradiénp [28,29. How- c(x,y=1iL,2)=c(x—yLt,y= —iL,2)+|Vc|L, (6)
ever, when the mass concentratioris small, the thermal

diffusion ratio is expected to be rather small because it musfyhereL is the linear system size gfdirection that is parallel
vanish in a pure liquid28]. We thus can safely neglect the to both the concentration and shear gradient directions. It is
term proportional tov T, as well as the term proportional to also assumed that the system is infinitely large in all other
Vp in the expression of because we do not consider any directions. The statistically averaged, time-independent
gravity-induced effect. To make the analysis below as simplequationg1) and(2) under the imposed boundary conditions
as possible, we further assume that the mixture is incom¢) and(6) have solutions

pressible. Consequently, the only relevant hydrodynamic

variables are the concentratienand the momentunpv of (v(r))=yye,, (7)
the mixture. The equations describing the time evolution of
these variables supplemented by the suitable random forces (c(r))y=co+|Vcly, (8

are of the form9,12,3Q
wherec, stands for the concentration in tge=0 plane. We

dJc 1 have here chosen our coordinate frame whose origin is at rest

E“LV'VCZ B ;V'J Vg, (@) by making use of the Galilean invariance. It is also easy to
show that, within the present model, the average concentra-
oV 1 tion profile (8) is linearly stable for a perturbation with any
rm +(v-V)v=— ;Vp+ vW2v+V.-S, (20  wave number under the imposed velocity profilg [32].

C. Linearized hydrodynamic equations around

where the diffusion flux is given ag=—-pDVc, and the the steady state

hydrostatic pressuneis determined from the incompressibil-
ity condition V-v=0. HereD is the mass diffusive coeffi- Now letc={c)+ dc andv=(v)+ év in Egs.(1) and(2).
cient, v=/p is the kinematic viscosity of the mixturep( We then obtain the linearized equations for fluctuations
the zero shear viscosityThe random forceg andS are the  and év=(éu,dv,dw) as

random concentration flux and the random stress tensor, re- P 5

spectively. The correlations of these random forces retain v L 2

their local equilibrium values given by6,8,9,28 ot oct W&x dc=—|Vc|sv+DV=ac+, ©)

. (r' t"))= -1 X —r' —t’ J . d . 1
(9i(r.0g;(r" 1)) =2keTp "Dxedy X (=)t t%é) SOV VY v yo0B= Y ap+uVEevH, (10

(Su(r,0)Sim(r',t"))=2kgTp [ 8 Sim+ Simd; where an equation for the pressure fluctuation follows from

5 the divergence of the equation fév,
—3818iml S (r—r")s(t—t"), (4)
. d

and g is uncorrelated withS. In the following, we assume VZop= —2py5 Sv+pV-f. (11
that the osmotic compressibility.=(dc/du),+ and the
mass diffusivityD are both independent of the concentrationHere we introduced the random variablés-V-g and f
¢, wherep is the chemical potential of the mixtuf®,12,24. =V -.S. Equation(9) implies that the onlyy component of
This assumption may be valid when the gradi@ht| is not  the velocity fluctuationsv can affect the dynamics afc.
sufficiently large. We note that the local equilibrium assump-Eliminating ép from Eg. (10) by using Eq.(11), we obtain
tion in Egs.(3) and (4) is justified from the fact that the the linearized hydrodynamic equations relevant to the
random forces represent the fast and localized molecular prgresent purpose of the form
cess which cannot be affected by the macroscopic gradients

i iti J . 14
of the hydrodynamic quantities. J kaaT) 56 (1) = — | V¢| vy (1) — DKESC (1) + A1),
y

ot
B. Boundary conditions (12
Although we are primarily interested in the bulk fluctua- P K.k
tion properties of the mixture, appropriate boundary condi- | — — 'ykxT) Sy (t) = _( yk2—2'yX—2y> S (1) + T (1),
tions are required to specify a macroscopic steady state of the Jt Ky K

averaged thermodynamic quantitigd). We adopt here the (13
standard Lees-Edwards type boundary conditif®5s,31,

which can be written explicitly as where the Fourier transform of an arbitrary functig(r,t)

is defined as

v(x,y=3L,2)=v(x—yLt,y=—3L,2)+yLe (5 t—f "
and Hr.)= (2m)
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Note that the random variable in E¢L3) is redefined by This relation implies that it is sufficient to consider the func-
Fi(t) ==(8y;— kyk; /k?) fji(1). This variable andj(t) sat-  tion C.p(k,t;k",0=C,4(k,k’',t) for t=0 in the following
isfy the correlation properties given from E@) and Eq.(4)  calculations, without loss of generalifg0].
as Substituting Eqs(17) and (18) into Egs.(23) and using
_ the properties of the random variablg$) and(16), we can
I\ — 1 2 3g3 ’ Y
(Ok() 0 (1)) =2kgTp™ "D xck(2m) 5" (k+k") &(t t1)5 derive the time correlation functions of the hydrodynamic
(15 modes. The calculations are somewhat lengthy, so we here

(F(OF (1)) =2ks T Lok2 (2m) 363k + K ) o(t—t'),  9Ive only the results:

(19 Cop(k, k' )=Ca(k,)(2m)383(k+K (1)), (25

and (6, (t)f(t'))=0, wherek? =k2+k2.

The set of equation€l2) and(13) are most easily solved Where
by making a transformation to the local Lagrangian coordi-
nate given byr’ =r— yyte, [10,22—24. Applying the stan- keT K
dard manipulation described elsewhg?d], we readily find Coo(kit)= P K2
the solutions of the form

G,,(k, t)+2yG L(k,t)

oo xf (kk,+Kk2s)G2,(k,9)ds|,  (26)
5Uk(t):f fk(_s)(t_S)va(k,S)dS, (17) t
0
kgT vk?
s = 360(t) — | Vel se(t), 1®  cukt=" x, Gtk H+2/veP U 61k
where k.s)
,S
. f ds—eet n ds'G2,(k,s')
sc{t)= J O~ (t—5)Gec(k,9)ds, (19) Gy (K,S) J maxes.
0
s Geo(k,s")
X | dg'——|, 2
and ﬁ 6. (ks (27)
5c(kl)(t)=f OV (-5 (t—5)Gc(K,s)ds. (20 and the cross-correlation function given by
0
Herek(t) is the time-dependent wave vector defined as Ce,(k,t)= —Zk—|Vc| VkZ)G 1(k,t)
k(t) = k_ 'ykxteyi (21) © GCC(k’S) o0 2 ,
] ) ds——7—— ds'G;,(k,s’).
and the Green’s functions are given by 0 Guu(K,S) Jmaxe)
(28)

Gk, t)= exp( - J;Faa(k( - T))d’]’) , (22

Here the Green’s functions are written explicitly as

whereT .(k) = Dk? andT',, (k) = vk?— 2 vk~ 2k,k, . Gedlk,t) =@ KTk, (29)
D. Correlation functions G,, (k)= T(R e~ vk2T (K, 1) (30)
The space-time correlation function of the hydrodynamic
fluctuations under the uniform shear is defined b§] with
Cop(k ik 1) =( (D g () (23 T(k,t) =t+ yk,k t2+ 3 y?K3t®, (32)

for (a,B)=(c,v), where the angular bracket represents the 9

statistical average with respect to the random variablasd (k)= =Tk t)=1+ ZyRXRyt + '7,2R>2<t2, (32
f. The function¢, represents eithefc or sv. Under the ot

uniform shear condition, the system is invariant with respect

to the temporal transformation, whereas it is not invarianwhere k=k/|k|. In the derivations of Eqs(26)—(28), we
with respect to the spatial transformatigri®,23—-23. The have made use of the identityG,,(k(—t),s)

time invariance property imposes the symmetry =G, (k1) G a(k,s+1).
5 _ Although Egs. (26)—(28) are rather complicated, the
Cap(k, K 1) =Cp(k,t—t";k",0). (24 equal-time correlation functions have somewhat simpler
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forms because of the recovery of the translational invariance 106
with respect to the space. Setting0 in Egs.(26)—(28), we \
obtain 104 | i
keT K2 [ D . 2 T J313
C,, (k)= — = 1+2yJ dt(Ryk, +K2t)e 2T | 10 [ e S :
p k2 I 0 +*+**’+—.F N
T
(33 10 f RN 1
+
- ~ 2 'k+
kT (vk2) (= er—DIKT(k) I(g) i S, i
Coclk)= =y 14+2|Ve|2—2 f dt—— 10 .
P i Xc Jo 7(K,t) 4 *
10 1 S, -4 T
®© N ~, .
% dt’ 2(k,t’ e—zysz(k,t) 6 *,
2238 ! .-
x
v e DIET() 10'8 | *"f\,,:
X f dt'———— (39
0 T(kat”) 1(-)10 1 1 1
0.01 0.1 1 10 100
and q
KgT N e(r=D)K?T(k,1) FIG. 1. Plots of numerically evaluated scaling functity),
Cep(k)=— ZT|VC|(VkL) jo dtT where the momentum autocorrelation function is written in the form
7(K,1) C,,(k,0,0)=p kg T[1+1(£,k)]. The dashed and dotted lines rep-
» . o resent the asymptotic functions for large-1 [Eq. (39)] and for
XJ dt’ 72(k,t")e 2Tkt (35 smallg<1 [Eq. (40)], respectively.
t

] ) Equation(36) is the standard result in thermal equilibrium
Equations(33)—(35) together with Eqs(31) and(32) are the  [33] |n contrast to this, the second terms in E2i) and Eq.

main results of this section. The same result as(Bg). has  (3g) show the anomalous enhancements of the hydrodynamic
also been derived for the simple fluid in RE26]. Thus the  f,ctyations in the presence of the concentration gradient.
correlation function between the momentum fluctuations isrpese results were first predicted by Kirkpatrigkal. using
unaffected by the steady concentration gradient within the,,qe coupling and kinetic theofy] and subsequently con-

present analysis. firmed by Ronis and Procaccia using fluctuating hydrody-
namics[8]. On the other hand, in the limit of a small con-
Ill. LONG-RANGE CORRELATIONS centration gradient, Eqs(37) and (38) converge to the

equilibrium forms given byC (k) —kgTx./p and C,(k)

“—0 regardless of the presence of the shear flow. However,

the momentum-momentum correlation function becomes

long ranged in this case because of the influence of the shear
[6,8,10,25,26 Two asymptotic forms in the selected direc-

We shall first examine the two limiting cases studied pre
viously in Eqs.(33)—(35). At zero shear rate, Eq&33)—(35)
are reduced to the form

va(k)_>kB—T|Ri|2, (36)  tion of the wave vectok=(k,0,0) are given by26]
p
2 C,,(k,0,0) kE‘T(1+1 v ) (39)
keT (vk?) (= w0(k,0,0)0~ — -
ccc(k)ﬂ%xc 1+2|VC|2X—LJ dtelr~ DK p 2 2K
c 0

for k&,>1, and
X fmdt1872vk2t' ft,dt,,e(V7D)k2t”
t 0

gT /(2 3 /o '7,2/3
k ~— = T = ——— 4
kgT V]2 |k, |2 C,u(k,0,0) p (3) (3 e (40)
" X T X D(v+D) K¢ | 37)

for k&,<1, wherel'(x) is the Gamma function. The direct
numerical evaluation of E433) is also shown in Fig. 1. The
length scale which characterizes this crossover is introduced
as

_ keT V| [k \ﬁ
__T—(V—I—D)?' (38) &= 2" (41
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In the following, we shall focus our attention on the be- 106
havior of Eq.(34) for arbitrary magnitudes of the shear rate
y and the concentration gradigi¥c|. It is easy to show that
Eq. (34) can be written in the form

kgT

[Ve|?
Ceok)= TXC

1+ — F(kfv)). (42
XcY

F(9

We here consider the case where the scattering wave Jector
is perpendicular to the concentration gradidnt, i.e., k

=k, =(k,0k,). This scattering geometry still holds all of
the essential features of the nonequilibrium effects found in
this system, and is actually the configuration adopted in most
of the previous light scattering experimer®,15-17,19.

The scaling functionF(q) in Eq. (42) in this geometry is
given by

- 0.01 0.1 1 10 100
e(1-2)4”T(a,s)

F(a)=2q" =
0 1+q2s?
” FIG. 2. The scaling functiorr(ké,) as a function ofg=ké¢,
~ 27 (4 <! ~
xf ds'(1+g2s'?)%e 29°T(@s) obtained by the numerical integration of E¢3) for g,=1 anda
S =0.01. The lines are the asymptotic results derived analytically.
Note that the crossover wave numbers givenkidy=1 andké&.

v J'S/ dAS" (1-a)a7T(3,5") (43) =1 correspond t@=1 andgq=a" 2 respectively.
0o 1+0g2s"? ’
~ - i ) Kg |Vcl?
whereT(q,t)=t+ 3g%t®> anda=D/v is the ratio of the mass Cec(k,0,00~ — xc — (46)
diffusivity to the viscous diffusivity, which is usually much P xcD(v+D)k
smaller than unity. As can be understood from Ep), the
effect of the shear is most likely to become evident in thefor kg >1, and
particular direction of the wave vector given bi
=(k,0,0). To simplify the analysis, we restrict our interest to
the fluctuations in this direction. Because of this simplifica- ksT alVel?
tion, the asymptotic behavior for smajk= k&, limit is easily Cec(k,0,0)~ X 1+ PRV (47)
found to be ¢
3\2R72 (5 for k¢, <1, where the numerical constaatis given by «
F(Q)“(E) ZF<§ q_4/3- (44) :(3)2/3(772/4)1-*(5)%29
2 3 e

In Fig. 2, a numerically calculated scaling functibiiq)
Equation(44) suggests that the enhancement of the nonequis plotted with the asymptotic functions for large and snaall
librium fluctuations is severely restricted in the long wave-deduced from Eqg46) and(47), respectively. Although the
length limit. On the other hand, the opposite asymptotic reintermediate region given bf;1< k< g;l seems to have
gion, i.e., the short wavelength limit, is representedkdy k=2 dependence, whether it is a true scaling regime or just a
>1, where the second characteristic length s€alis given  crossover is still unclear at present. Note, however, that this

by region is practically extended in a wide range of the wave
numbers, which is typically given by d<q<a YA~10?

B \F_ 12 —10°) due to the large asymmetry between the magnitude of

&= ;—a § <&y (49 the viscous and mass diffusivity. Therefore, we expect that

this unclearness will be clarified by evaluatifdq) for a
. : i -2
It turns out that the asymptotic behavior Btke,) for k&, _much smallea than_ that considered heraflo _), though
>1 has the same wave number dependence given by tHEcal_fm_ot k_)e done in the present study primarily because of
second term in Eq(37). This implies that thermal fluctua- the limitation of the numerical accuracy.
tions of the hydrodynamic variables f&g.>1 are little af-
fected by the shea_r and can dls_5|pate purely th_ermally. (_:on- IV. DISCUSSION
sequently, the static concentration autocorrelation functions
in the two limiting cases of short and long wave numbers are As pointed out in a number of papers, the long-range
written as correlation originates from the nondissipative coupling of
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momentum fluctuations with concentration fluctuations(For example, we can obtaik,~1 mm ! at most, for a
through a macroscopic concentration gradigh8]. This is typical value of the viscosityy~10"2 cn?s * and for a
sometimes called a linear mode-coupling effdcl]. Follow-  very high rate of the shear that is of the order of 0%.)
ing the discussions given in Refs34,35, let us suppose a Contrary to this situation, a typical value of the diffusion
small fluid element of linear siz¢ in the mixture in the  coefficientD~10"° cn? s~ * givesk.~10° cm™* even for a

absence of the shear. This fluid portion is carried along thg},ery small rate of the shear as-1 s *. Therefore, the wave
direction of the gradient by a spontaneously generated MG, mper k  which characterizes the onset of the shear-

. . . . . — 2 _ . . . .
mentum fluctuation of its lifetime given by,~¢%/v. Be induced frustration of the long-range correlation, is well cov-

cause the surrounding fde_has a different average conceil. by conventional low-angle light scattering methods, as
tration, the large concentration difference persists for a time

.~ £2/D as it relaxes purely diffusively. Considering that well as the recently reported new optical technigBe).

a=D/v<1, one can notice that a short-living, spontaneous There have been developed some experimental techniques

momentum fluctuation can create a long-lasting, IargeIO produce a macroscopic concentration gradient in a fluid,

amplitude concentration fluctuation, which results in a long-SUch as utilizing a diffusive remixing process of a mixture

range spatial correlation between concentration fluctuatione32] O making use of a large Soret effect driven by a steady
in the steady state. temperature gradieil9,37. Although it is far beyond our

However, shear flow limits the size of such fluctuations@Pility to guess about, the latter method might be more fa-
significantly, because a sufficiently large fluctuation is drawnvorable with respect to the compatibility with the shear flow,
out and is even broken up by the shear before it disappeags Well as the spatial uniformity and the temporal stationarity
by the diffusion[22,23,29. In our system{, and ¢, corre-  Of the concentration gradient. When the large Soret effect is
spond to the crossover length scale from the diffusionexpected, however, temperature fluctuations should be taken
dominated decay to the shear-dominated decay of concentréato account, because the cross-correlation between concen-
tion and momentum fluctuations, respectively. Becafysis  tration and temperature fluctuations makes an important con-
much smaller tharg, in practice, the overall behavior of tribution to the Rayleigh scattering9,17]. The dynamic
C.c(k) is expected to have three distinctive wave numberstructure factor in that case is composed of various contribu-
domains. They can be sketched as follows. tions from the correlations between the concentration, tem-

(I) When a small portion of mixture of linear size larger perature, and momentum fluctuations, and then the third
than ¢, is carried along the direction of the gradient, it un- length scaleg;=(D+/v)*2 should enter into the theory,

de_rgoes a dramatic shear_de_formann and becom_es h'gm;\\fhereDT is the thermal diffusivity of the mixture. However,
anisotropic. Because the lifetime of the concentration flucs

tuation is controlled by the shortest length scale of its spati E.he whole spectrum ﬁ an L'r)]e sdeparate_d usu;)g p%o'%)n cgrrela—
extent, this fluctuation dissipates thermally much faster tha jon spectrqscopy_ when the decay times betw eh an
in a quiescent fluid. Thus the long-range correlation betwee < fluctua_t!ons_ differ by Se"e.“?' orders of magnltukﬁﬂ.
concentration fluctuations is severely suppressed by the shehfiS condition is actually satisfied for most mixtures, be-
flow in this wave number region. cagge a ty_plcal \_/alue of the _therrngl dlffuswiwr is about

(I When 'yrv~§2/§5<1, a momentum fluctuation can tlhoan E(rryiscmzv;/[ulle[laz]mass diffusiviyD is usually smaller
displace a small parcel of fluid of sizewithout a notable '

shear deformation. However, 7.~ ¢£%/¢2>1, the shear
flow strongly affects the decay of this large-amplitude con-
centration fluctuation before it dissipates thermally. Then the
decay of the fluctuation is still faster than in a quiescent fluid ) ) ) )
in this region, and the resulting correlation exhibits a weaker N this paper, using fluctuating hydrodynamics, we have
divergent dependence on the wave numisetisan onk 4. studied the fluctuation properties in@ilute) binary mixture

(Il When the size of a fluctuation is much smaller thanWwith imposed uniform concentration and shear gradients. It is
&., the effect of the shear becomes rather weak becausedgmonstrated that the static concentration autocorrelation
thermal diffusive decay is faster than the shear deformatiofinction has three distinctive wave number regions. The
time scale;'yq-v<yrc<l. Therefore the usual story for a length scales which characterize the crossovers between dif-

quiescent fluid presented in the beginning of this section is fiferent regimes are given @~ (D/y)Y? and &,~ (v/y)*?,
for this regime. respectively. In particular, shear strongly suppresses e
Figure 2 shows that the deviation from the* diver-  divergence foké,<1, while the asymptotic shear-controlled
gence becomes pronounced at the wave nurkpe_ *. It  behavior is found analytically in the smallest wave numbers
should be emphasized that the presenck. af a clear evi-  satisfyingké,<1. It is worth noting that the shear-induced
dence of the shear-induced suppression of the long-rangguench of the long-range correlation may be experimentally
correlation. Although the shear-controlled asymptote is conebservable. The experimental system we are envisaging here
firmed only in the wave numbers smaller thiay~ gv‘l, it is, for example, a suitably chosen dilute aqueous colloidal
may be impossible to verify this scaling experimentally be-suspension. 1If we choos®=2x10 ' cnfs!, v=8
cause the length scalg is so macroscopic for relevant fluid X102 cn?s™ !, and Dy=10"3cn?s ! as typical values
parameters and experimentally feasible shear @826 of the kinetic and transport coefficien{87], we find

V. CONCLUSION
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