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Shear-induced quench of long-range correlations in a liquid mixture
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Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
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A static correlation function of concentration fluctuations in a~dilute! binary liquid mixture subjected to both
a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrody-
namics. It is shown that a well-knownu¹cu2/k4 long-range correlation at large wave numbersk crosses over to

a weaker divergent one at wave numbers satisfyingk,(ġ/D)1/2, while an asymptotic shear-controlled power-

law dependence is found at much smaller wave numbers given byk!(ġ/n)1/2, wherec, ġ, D, andn are the
mass concentration, the rate of the shear, the mass diffusivity, and the kinematic viscosity of the mixture,
respectively. The result will provide the possibility to observe the shear-induced suppression of a long-range
correlation experimentally by using, for example, a low-angle light scattering technique.
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I. INTRODUCTION

Long-range correlations in a fluid far from equilibrium
one of the most salient features of nonequilibrium fluctu
tions@1–6#. Since the seminal discovery of thek24 enhance-
ment of the Rayleigh component of the structure factor i
fluid with a uniform temperature gradient by Kirkpatric
Cohen, and Dorfman@7#, wherek is the wave number, alge
braic decays of correlation functions have been found th
retically in a wide class of nonequilibrium systems@8–14#.
The existence of such generic long-range correlations
have been confirmed in a series of the detailed light sca
ing experiments in pure liquids@15,16# and in binary mix-
tures @17#. Although the agreement between the theoreti
studies and the experimental ones is sufficiently quantitat
it has been limited to relatively high wave number region

On the other hand, large-scale, long-time behavior of s
nonequilibrium fluctuations is attracting much more attent
in recent years@18#. Ultra-low-angle light scattering experi
ments performed by Vailati and Giglio@19# have revealed an
impressive gravity-induced quench of thek24 divergence of
the Rayleigh line intensity at very smallk range@20# in a
binary mixture subjected to a uniform concentration gradi
driven by the large Soret effect. So far as we know, this is
first experimental demonstration that true asymptotic beh
ior of a long-range correlation at large distances is qual
tively different from that predicted by the linear respon
theory at short distances.

However, from the theoretical point of view, the gravit
induced effect seems to be somewhat exceptional becau
can be understood within the simple linear response the
Generally speaking, a full nonlinear analysis of hydrod
namic equations is required for studying large-scale trans
and fluctuation properties of a fluid@21#. Therefore, mainly
because of its technical difficulty, studies beyond linear
sponses are rare in systems far from equilibrium so far.
only exception is a system undergoing uniform shear fl
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where effects of the shear advection can be treated in
analytic way@22–24#. It has been predicted theoretically th
the density autocorrelation function and the densi
momentum correlation function in a sheared compress
fluid exhibit much weaker divergent behavior in small wa
number limits than thek24 divergence found in large wav
numbers@25#. A similar result has also been predicted for
incompressible fluid@26#. Nevertheless, it might be difficul
to verify these predictions directly by using available expe
mental techniques, because the crossover length scale
these systems are so macroscopic.

The purpose of this paper is to emphasize effects of
shear upon long-range correlations which can allow an
perimental confirmation. To this end, we consider a parti
larly simple system, a~dilute! low-molecular-weight binary
mixture with imposed concentration and uniform shear g
dients @27#. On the basis of fluctuating hydrodynamics a
proach@28#, we calculate a static concentration autocorre
tion function which contributes to the total intensity of th
Rayleigh peak in a light scattering experiment. In Sec.
hydrodynamic equations for the concentration and the ve
ity field are introduced with suitable random forces. We o
tain general forms of space-time correlation functions of
hydrodynamic variables by solving the linearized equatio
around the steady state under imposed boundary conditi
In Sec. III, the static correlation function of concentratio
fluctuations is expressed in terms of a universal funct
which describes a shear-induced frustration of the long-ra
correlation. This function is numerically evaluated and
compared with asymptotic functions that are analytically d
rived. In Sec. IV, we provide a simple physical interpretati
of our results. We also present rough estimations of
crossover length scales for a realistic fluid to suggest p
sible experimental verifications. Our conclusion is given
the last section.

II. MODEL AND ANALYSIS

A. Basic equations and approximations

The mass diffusion fluxj generally depends not only o
the concentration gradient¹c but also on the temperatur
©2004 The American Physical Society02-1
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HIROFUMI WADA PHYSICAL REVIEW E 69, 031202 ~2004!
gradient¹T and on the pressure gradient¹p @28,29#. How-
ever, when the mass concentrationc is small, the thermal
diffusion ratio is expected to be rather small because it m
vanish in a pure liquid@28#. We thus can safely neglect th
term proportional to¹T, as well as the term proportional t
¹p in the expression ofj because we do not consider an
gravity-induced effect. To make the analysis below as sim
as possible, we further assume that the mixture is inco
pressible. Consequently, the only relevant hydrodyna
variables are the concentrationc and the momentumrv of
the mixture. The equations describing the time evolution
these variables supplemented by the suitable random fo
are of the form@9,12,30#

]c

]t
1v•“c52

1

r
“• j1“•g, ~1!

]v

]t
1~v•“ !v52

1

r
“p1n¹2v1“•S, ~2!

where the diffusion flux is given asj>2rD“c, and the
hydrostatic pressurep is determined from the incompressibi
ity condition “•v50. HereD is the mass diffusive coeffi
cient, n5h/r is the kinematic viscosity of the mixture (h
the zero shear viscosity!. The random forcesg andS are the
random concentration flux and the random stress tensor
spectively. The correlations of these random forces re
their local equilibrium values given by@6,8,9,28#

^gi~r ,t !gj~r 8,t8!&52kBTr21Dxcd i j 3d3~r2r 8!d~ t2t8!,
~3!

^Sil ~r ,t !Sjm~r 8,t8!&52kBTr21n@d i j d lm1d imd j l

2 2
3 d i l d jm#d3~r2r 8!d~ t2t8!, ~4!

and g is uncorrelated withS. In the following, we assume
that the osmotic compressibilityxc5(]c/]m)p,T and the
mass diffusivityD are both independent of the concentrati
c, wherem is the chemical potential of the mixture@9,12,28#.
This assumption may be valid when the gradientu“cu is not
sufficiently large. We note that the local equilibrium assum
tion in Eqs. ~3! and ~4! is justified from the fact that the
random forces represent the fast and localized molecular
cess which cannot be affected by the macroscopic gradi
of the hydrodynamic quantities.

B. Boundary conditions

Although we are primarily interested in the bulk fluctu
tion properties of the mixture, appropriate boundary con
tions are required to specify a macroscopic steady state o
averaged thermodynamic quantities@6#. We adopt here the
standard Lees-Edwards type boundary conditions@25,31#,
which can be written explicitly as

v~x,y5 1
2 L,z!5v~x2ġLt,y52 1

2 L,z!1ġLêx ~5!

and
03120
st

le
-

ic

f
es

re-
in

-

o-
ts

i-
he

c~x,y5 1
2 L,z!5c~x2ġLt,y52 1

2 L,z!1u“cuL, ~6!

whereL is the linear system size ofy direction that is parallel
to both the concentration and shear gradient directions.
also assumed that the system is infinitely large in all ot
directions. The statistically averaged, time-independ
equations~1! and~2! under the imposed boundary condition
~5! and ~6! have solutions

^v~r !&5ġyêx , ~7!

^c~r !&5c01u“cuy, ~8!

wherec0 stands for the concentration in they50 plane. We
have here chosen our coordinate frame whose origin is at
by making use of the Galilean invariance. It is also easy
show that, within the present model, the average concen
tion profile ~8! is linearly stable for a perturbation with an
wave number under the imposed velocity profile~7! @32#.

C. Linearized hydrodynamic equations around
the steady state

Now let c5^c&1dc andv5^v&1dv in Eqs.~1! and ~2!.
We then obtain the linearized equations for fluctuationsdc
anddv5(du,dv,dw) as

]

]t
dc1ġy

]

]x
dc52u“cudv1D¹2dc1u, ~9!

]

]t
dv1ġy

]

]x
dv1ġdvêx52

1

r
“dp1n¹2dv1f, ~10!

where an equation for the pressure fluctuation follows fr
the divergence of the equation fordv,

¹2dp522rġ
]

]x
dv1r“•f. ~11!

Here we introduced the random variablesu5“•g and f
5“•S. Equation~9! implies that the onlyy component of
the velocity fluctuationdv can affect the dynamics ofdc.
Eliminating dp from Eq. ~10! by using Eq.~11!, we obtain
the linearized hydrodynamic equations relevant to
present purpose of the form

S ]

]t
2ġkx

]

]ky
D dck~ t !52u“cudvk~ t !2Dk2dck~ t !1uk~ t !,

~12!

S ]

]t
2ġkx

]

]ky
D dvk~ t !52S nk222ġ

kxky

k2 D dvk~ t !1 f k~ t !,

~13!

where the Fourier transform of an arbitrary functionf(r ,t)
is defined as

f~r ,t !5E dk

~2p!3
fk~ t !eik•r. ~14!
2-2



di

i

th

ec
an

c-

ic
here

e
ler

SHEAR-INDUCED QUENCH OF LONG-RANGE . . . PHYSICAL REVIEW E 69, 031202 ~2004!
Note that the random variable in Eq.~13! is redefined by
f k(t)5( j (dy j2kykj /k2) f j k(t). This variable anduk(t) sat-
isfy the correlation properties given from Eq.~3! and Eq.~4!
as

^uk~ t !uk8~ t8!&52kBTr21Dxck
2~2p!3d3~k1k8!d~ t2t8!,

~15!

^ f k~ t ! f k8~ t8!&52kBTr21nk'
2 ~2p!3d3~k1k8!d~ t2t8!,

~16!

and ^uk(t) f k8(t8)&50, wherek'
2 5kx

21kz
2 .

The set of equations~12! and~13! are most easily solved
by making a transformation to the local Lagrangian coor
nate given byr 85r2ġytêx @10,22–24#. Applying the stan-
dard manipulation described elsewhere@24#, we readily find
the solutions of the form

dvk~ t !5E
0

`

f k(2s)~ t2s!Gvv~k,s!ds, ~17!

dck~ t !5dck
(0)~ t !2u“cudck

(1)~ t !, ~18!

where

dck
(0)~ t !5E

0

`

uk(2s)~ t2s!Gcc~k,s!ds, ~19!

and

dck
(1)~ t !5E

0

`

dvk(2s)~ t2s!Gcc~k,s!ds. ~20!

Herek(t) is the time-dependent wave vector defined as

k~ t !5k2ġkxtêy , ~21!

and the Green’s functions are given by

Gaa~k,t !5expS 2E
0

t

Gaa„k~2t!…dt D , ~22!

whereGcc(k)5Dk2 andGvv(k)5nk222ġk22kxky .

D. Correlation functions

The space-time correlation function of the hydrodynam
fluctuations under the uniform shear is defined by@10#

C̃ab~k,t;k8,t8!5^fa,k~ t !fb,k8~ t8!& ~23!

for (a,b)5(c,v), where the angular bracket represents
statistical average with respect to the random variablesu and
f. The functionfa represents eitherdc or dv. Under the
uniform shear condition, the system is invariant with resp
to the temporal transformation, whereas it is not invari
with respect to the spatial transformations@10,23–25#. The
time invariance property imposes the symmetry

C̃ab~k,t;k8,t8!5C̃ab~k,t2t8;k8,0!. ~24!
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This relation implies that it is sufficient to consider the fun
tion C̃ab(k,t;k8,0)[C̃ab(k,k8,t) for t>0 in the following
calculations, without loss of generality@10#.

Substituting Eqs.~17! and ~18! into Eqs.~23! and using
the properties of the random variables~15! and~16!, we can
derive the time correlation functions of the hydrodynam
modes. The calculations are somewhat lengthy, so we
give only the results:

C̃ab~k,k8,t !5Cab~k,t !~2p!3d3
„k1k8~ t !…, ~25!

where

Cvv~k,t !5
kBT

r

k'
2

k2 FGvv~k,t !12ġGvv
21~k,t !

3E
t

`

~ k̂xk̂y1 k̂x
2s!Gvv

2 ~k,s!dsG , ~26!

Ccc~k,t !5
kBT

r
xcFGcc~k,t !12u“cu2

~nk'
2 !

xc
Gcc

21~k,t !

3E
0

`

ds
Gcc~k,s!

Gvv~k,s!
E

max(s,t)

`

ds8Gvv
2 ~k,s8!

3E
t

s8
ds9

Gcc~k,s9!

Gvv~k,s9!
G , ~27!

and the cross-correlation function given by

Ccv~k,t !522
kBT

r
u“cu~nk'

2 !Gvv
21~k,t !

3E
0

`

ds
Gcc~k,s!

Gvv~k,s!
E

max(s,t)

`

ds8Gvv
2 ~k,s8!.

~28!

Here the Green’s functions are written explicitly as

Gcc~k,t !5e2Dk2T( k̂,t), ~29!

Gvv~k,t !5t~ k̂,t !e2nk2T( k̂,t) ~30!

with

T~ k̂,t !5t1ġ k̂xk̂yt
21 1

3 ġ2k̂x
2t3, ~31!

t~ k̂,t !5
]

]t
T~ k̂,t !5112ġ k̂xk̂yt1ġ2k̂x

2t2, ~32!

where k̂5k/uku. In the derivations of Eqs.~26!–~28!, we
have made use of the identity Gaa„k(2t),s…
5Gaa

21(k,t)Gaa(k,s1t).
Although Eqs. ~26!–~28! are rather complicated, th

equal-time correlation functions have somewhat simp
2-3
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HIROFUMI WADA PHYSICAL REVIEW E 69, 031202 ~2004!
forms because of the recovery of the translational invaria
with respect to the space. Settingt50 in Eqs.~26!–~28!, we
obtain

Cvv~k!5
kBT

r

k'
2

k2 F112ġE
0

`

dt~ k̂xk̂y1 k̂x
2t !e22nk2T( k̂,t)G ,

~33!

Ccc~k!5
kBT

r
xcF112u“cu2

~nk'
2 !

xc
E

0

`

dt
e(n2D)k2T( k̂,t)

t~ k̂,t !

3E
t

`

dt8t2~ k̂,t8!e22nk2T( k̂,t8)

3E
0

t8
dt9

e(n2D)k2T( k̂,t9)

t~ k̂,t9!
G , ~34!

and

Ccv~k!522
kBT

r
u“cu~nk'

2 !E
0

`

dt
e(n2D)k2T( k̂,t)

t~ k̂,t !

3E
t

`

dt8t2~ k̂,t8!e22nk2T( k̂,t8). ~35!

Equations~33!–~35! together with Eqs.~31! and~32! are the
main results of this section. The same result as Eq.~33! has
also been derived for the simple fluid in Ref.@26#. Thus the
correlation function between the momentum fluctuations
unaffected by the steady concentration gradient within
present analysis.

III. LONG-RANGE CORRELATIONS

We shall first examine the two limiting cases studied p
viously in Eqs.~33!–~35!. At zero shear rate, Eqs.~33!–~35!
are reduced to the form

Cvv~k!→ kBT

r
uk̂'u2, ~36!

Ccc~k!→ kBT

r
xcF112u“cu2

~nk'
2 !

xc
E

0

`

dte(n2D)k2t

3E
t

`

dt8e22nk2t8E
0

t8
dt9e(n2D)k2t9G

5
kBT

r
xcS 11

u“cu2

xcD~n1D !

uk̂'u2

k4 D , ~37!

Ccv~k!→22
kBT

r
u“cu~nk'

2 !E
0

`

dte(n2D)k2tE
t

`

dt8e22nk2t8

52
kBT

r

u“cu
~n1D !

uk̂'u2

k2
. ~38!
03120
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Equation~36! is the standard result in thermal equilibriu
@33#. In contrast to this, the second terms in Eq.~37! and Eq.
~38! show the anomalous enhancements of the hydrodyna
fluctuations in the presence of the concentration gradi
These results were first predicted by Kirkpatricket al. using
mode coupling and kinetic theory@7# and subsequently con
firmed by Ronis and Procaccia using fluctuating hydrod
namics@8#. On the other hand, in the limit of a small con
centration gradient, Eqs.~37! and ~38! converge to the
equilibrium forms given byCcc(k)→kBTxc /r and Ccv(k)
→0 regardless of the presence of the shear flow. Howe
the momentum-momentum correlation function becom
long ranged in this case because of the influence of the s
@6,8,10,25,26#. Two asymptotic forms in the selected dire
tion of the wave vectork5(k,0,0) are given by@26#

Cvv~k,0,0!;
kBT

r S 11
1

2

ġ2

n2k4D ~39!

for kjv@1, and

Cvv~k,0,0!;
kBT

r S 2

3D 1/3

GS 2

3D ġ2/3

n2/3k4/3
~40!

for kjv!1, whereG(x) is the Gamma function. The direc
numerical evaluation of Eq.~33! is also shown in Fig. 1. The
length scale which characterizes this crossover is introdu
as

jv5Aġ

n
. ~41!

FIG. 1. Plots of numerically evaluated scaling functionI (q),
where the momentum autocorrelation function is written in the fo
Cvv(k,0,0)5r21kBT@11I (jvk)#. The dashed and dotted lines re
resent the asymptotic functions for largeq@1 @Eq. ~39!# and for
small q!1 @Eq. ~40!#, respectively.
2-4
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In the following, we shall focus our attention on the b
havior of Eq.~34! for arbitrary magnitudes of the shear ra
ġ and the concentration gradientu“cu. It is easy to show tha
Eq. ~34! can be written in the form

Ccc~k!5
kBT

r
xcS 11

u“cu2

xcġ
2

F~kjv!D . ~42!

We here consider the case where the scattering wave veck
is perpendicular to the concentration gradient“c, i.e., k
5k'5(kx,0,kz). This scattering geometry still holds all o
the essential features of the nonequilibrium effects found
this system, and is actually the configuration adopted in m
of the previous light scattering experiments@9,15–17,19#.
The scaling functionF(q) in Eq. ~42! in this geometry is
given by

F~q!52q2E
0

` ds

11q̂x
2s2

e(12a)q2T̃(q̂,s)

3E
s

`

ds8~11q̂x
2s82!2e22q2T̃(q̂,s8)

3E
0

s8 ds9

11q̂x
2s92

e(12a)q2T̃(q̂,s9), ~43!

whereT̃(q̂,t)5t1 1
3 q̂x

2t3 anda5D/n is the ratio of the mass
diffusivity to the viscous diffusivity, which is usually muc
smaller than unity. As can be understood from Eq.~43!, the
effect of the shear is most likely to become evident in
particular direction of the wave vector given byk
5(k,0,0). To simplify the analysis, we restrict our interest
the fluctuations in this direction. Because of this simplific
tion, the asymptotic behavior for smallq5kjv limit is easily
found to be

F~q!;S 3

2D 2/3p2

4
GS 5

3Dq24/3. ~44!

Equation~44! suggests that the enhancement of the none
librium fluctuations is severely restricted in the long wav
length limit. On the other hand, the opposite asymptotic
gion, i.e., the short wavelength limit, is represented bykjc
@1, where the second characteristic length scalejc is given
by

jc5AD

ġ
5a1/2jv!jv . ~45!

It turns out that the asymptotic behavior ofF(kjv) for kjc
@1 has the same wave number dependence given by
second term in Eq.~37!. This implies that thermal fluctua
tions of the hydrodynamic variables forkjc@1 are little af-
fected by the shear and can dissipate purely thermally. C
sequently, the static concentration autocorrelation functi
in the two limiting cases of short and long wave numbers
written as
03120
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Ccc~k,0,0!;
kBT

r
xcS 11

u“cu2

xcD~n1D !k4D ~46!

for kjc@1, and

Ccc~k,0,0!;
kBT

r
xcS 11

au“cu2

xcn
2/3ġ4/3k4/3D ~47!

for kjv!1, where the numerical constanta is given bya

5( 3
2 )2/3(p2/4)G( 5

3 )'2.9.
In Fig. 2, a numerically calculated scaling functionF(q)

is plotted with the asymptotic functions for large and smalq
deduced from Eqs.~46! and~47!, respectively. Although the
intermediate region given byjv

21,k,jc
21 seems to have

k22 dependence, whether it is a true scaling regime or ju
crossover is still unclear at present. Note, however, that
region is practically extended in a wide range of the wa
numbers, which is typically given by 1,q,a21/2(;102

2103) due to the large asymmetry between the magnitude
the viscous and mass diffusivity. Therefore, we expect t
this unclearness will be clarified by evaluatingF(q) for a
much smallera than that considered here (a51022), though
it cannot be done in the present study primarily because
the limitation of the numerical accuracy.

IV. DISCUSSION

As pointed out in a number of papers, the long-ran
correlation originates from the nondissipative coupling

FIG. 2. The scaling functionF(kjv) as a function ofq5kjv

obtained by the numerical integration of Eq.~43! for q̂x51 anda
50.01. The lines are the asymptotic results derived analytica
Note that the crossover wave numbers given bykjv51 and kjc

51 correspond toq51 andq5a21/2, respectively.
2-5
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HIROFUMI WADA PHYSICAL REVIEW E 69, 031202 ~2004!
momentum fluctuations with concentration fluctuatio
through a macroscopic concentration gradient@7,8#. This is
sometimes called a linear mode-coupling effect@10#. Follow-
ing the discussions given in Refs.@34,35#, let us suppose a
small fluid element of linear sizej in the mixture in the
absence of the shear. This fluid portion is carried along
direction of the gradient by a spontaneously generated
mentum fluctuation of its lifetime given bytv;j2/n. Be-
cause the surrounding fluid has a different average con
tration, the large concentration difference persists for a t
tc;j2/D as it relaxes purely diffusively. Considering th
a5D/n!1, one can notice that a short-living, spontaneo
momentum fluctuation can create a long-lasting, lar
amplitude concentration fluctuation, which results in a lon
range spatial correlation between concentration fluctuat
in the steady state.

However, shear flow limits the size of such fluctuatio
significantly, because a sufficiently large fluctuation is dra
out and is even broken up by the shear before it disapp
by the diffusion@22,23,25#. In our system,jc andjv corre-
spond to the crossover length scale from the diffusi
dominated decay to the shear-dominated decay of conce
tion and momentum fluctuations, respectively. Becausejc is
much smaller thanjv in practice, the overall behavior o
Ccc(k) is expected to have three distinctive wave num
domains. They can be sketched as follows.

~I! When a small portion of mixture of linear size larg
than jv is carried along the direction of the gradient, it u
dergoes a dramatic shear deformation and becomes h
anisotropic. Because the lifetime of the concentration fl
tuation is controlled by the shortest length scale of its spa
extent, this fluctuation dissipates thermally much faster t
in a quiescent fluid. Thus the long-range correlation betw
concentration fluctuations is severely suppressed by the s
flow in this wave number region.

~II ! When ġtv;j2/jv
2,1, a momentum fluctuation ca

displace a small parcel of fluid of sizej without a notable
shear deformation. However, ifġtc;j2/jc

2.1, the shear
flow strongly affects the decay of this large-amplitude co
centration fluctuation before it dissipates thermally. Then
decay of the fluctuation is still faster than in a quiescent fl
in this region, and the resulting correlation exhibits a wea
divergent dependence on the wave numbersk than onk24.

~III ! When the size of a fluctuation is much smaller th
jc , the effect of the shear becomes rather weak becau
thermal diffusive decay is faster than the shear deforma
time scale;ġtv!ġtc,1. Therefore the usual story for
quiescent fluid presented in the beginning of this section i
for this regime.

Figure 2 shows that the deviation from thek24 diver-
gence becomes pronounced at the wave numberkc;jc

21 . It
should be emphasized that the presence ofkc is a clear evi-
dence of the shear-induced suppression of the long-ra
correlation. Although the shear-controlled asymptote is c
firmed only in the wave numbers smaller thankv;jv

21 , it
may be impossible to verify this scaling experimentally b
cause the length scalejv is so macroscopic for relevant flui
parameters and experimentally feasible shear rates@25,26#.
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~For example, we can obtainkv;1 mm21 at most, for a
typical value of the viscosityn;1022 cm2 s21 and for a
very high rate of the shear that is of the order of 104 s21.!
Contrary to this situation, a typical value of the diffusio
coefficientD;1026 cm2 s21 giveskc;103 cm21 even for a

very small rate of the shear asġ;1 s21. Therefore, the wave
number kc , which characterizes the onset of the she
induced frustration of the long-range correlation, is well co
ered by conventional low-angle light scattering methods,
well as the recently reported new optical technique@36#.

There have been developed some experimental techni
to produce a macroscopic concentration gradient in a flu
such as utilizing a diffusive remixing process of a mixtu
@35# or making use of a large Soret effect driven by a stea
temperature gradient@19,37#. Although it is far beyond our
ability to guess about, the latter method might be more
vorable with respect to the compatibility with the shear flo
as well as the spatial uniformity and the temporal stationa
of the concentration gradient. When the large Soret effec
expected, however, temperature fluctuations should be ta
into account, because the cross-correlation between con
tration and temperature fluctuations makes an important c
tribution to the Rayleigh scattering@9,17#. The dynamic
structure factor in that case is composed of various contr
tions from the correlations between the concentration, te
perature, and momentum fluctuations, and then the t

length scalejT5(DT /ġ)1/2 should enter into the theory
whereDT is the thermal diffusivity of the mixture. However
the whole spectrum can be separated using photon cor
tion spectroscopy when the decay times betweenT-T and
c-c fluctuations differ by several orders of magnitude@9#.
This condition is actually satisfied for most mixtures, b
cause a typical value of the thermal diffusivityDT is about
1023 cm2 s21 while a mass diffusivityD is usually smaller
than 1025 cm2 s21 @12#.

V. CONCLUSION

In this paper, using fluctuating hydrodynamics, we ha
studied the fluctuation properties in a~dilute! binary mixture
with imposed uniform concentration and shear gradients.
demonstrated that the static concentration autocorrela
function has three distinctive wave number regions. T
length scales which characterize the crossovers between

ferent regimes are given asjc;(D/ġ)1/2 and jv;(n/ġ)1/2,
respectively. In particular, shear strongly suppresses thek24

divergence forkjc,1, while the asymptotic shear-controlle
behavior is found analytically in the smallest wave numb
satisfyingkjv!1. It is worth noting that the shear-induce
quench of the long-range correlation may be experiment
observable. The experimental system we are envisaging
is, for example, a suitably chosen dilute aqueous colloi
suspension. If we chooseD5231027 cm2 s21, n58
31023 cm2 s21, and DT51023 cm2 s21 as typical values
of the kinetic and transport coefficients@37#, we find
2-6
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kc;103 cm21 for very small shear rate asġ;1 s21 and

kc;104 cm21 for ġ;102 s21. This simple estimation sug
gests that the quenched spectrum of the spatial long-ra
correlation by the shear flow is well covered by a low-an
light scattering experiment. In addition, the total intens
under the central peak at the wave numberk;kc is about 102

times larger than that in the equilibrium if one assumesxc

;1026 s2 cm22, u“cu;0.1 cm21, and ġ;1 s21. We ex-
pect that this property makes an experimental verificat
easier. Experimental and numerical verifications of the p
posed effects will also become an important test for the
plicability of fluctuating hydrodynamics to a fluid in
coupled-nonequilibrium steady state.
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